Аптечные новости:

В состав нижегородской ГК Фармассоциация вошла местна

News image

Нижегородская аптечная сеть «Фармкомплект-аптека» вошла в состав нижегородской же группы компаний «Фармассоц...

Российская фармацевтическая ассоциация (Росфарма)

News image

Была создана в 1993 году по инициативе и при непосредственном участии фармацевтических работников . В настоя...

История фармокологии:

История создания лекарств

News image

Создание современных лекарственных средств является одним из крупнейших научных достижений XX века. Недаром ...

История возникновения аспирина

News image

Он родился как проявление сыновней любви, чтобы потом положить начало всемирному бизнесу. Старик, больной ар...

История фармакологии

News image

История фармакологии также же продолжительна, как и история человечества. Для облегчения страданий при забол...



Энергетика мышечной деятельности
Пациентам о лекарствах - Спортивная фармакология

энергетика мышечной деятельности

Ни одно движение не может быть выполнено без затрат энергии. Единственным универсальным и прямым источником энергии для мышечного сокращения служит аденозинтрифосфат - АТФ; без него поперечные мостики лишены энергии и актиновые нити не могут скользить вдоль миозиновых, сокращения мышечного волокна не происходит. АТФ относится к высокоэнергетическим (макроэргическим) фосфатным соединениям, при расщеплении (гидролизе) которого выделяется около 10 ккал/кг свободной энергии. При активизации мышцы происходит усиленный гидролиз АТФ, поэтому интенсивность энергетического обмена возрастает в 100-1000 раз по сравнению с уровнем покоя. Однако, запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы. В реальных условиях для того, чтобы мышцы могли длительно поддерживать свою сократительную способность, должно происходить постоянное восстановление (ресинтез) АТФ с той же скоростью, с какой он расходуется. В качестве источников энергии при этом используются углеводы, жиры и белки. При полном или частичном расщеплении этих веществ освобождается часть энергии, аккумулированная в их химических связях. Эта освободившаяся энергия и обеспечивает ресинтез АТФ.

Биоэнергетические возможности организма являются наиболее важным фактором, лимитирующим его физическую работоспособность. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (бескислородным) и аэробным (окислительным) путем. В зависимости от биохимических особенностей протекающих при этом процессов принято выделять три обобщенных энергетических системы, обеспечивающих физическую работоспособность человека:

алактная анаэробная, или фосфагенная, связанная с процессами ресинтеза АТФ преимущественно за счет энергии другого высокоэнергетического фосфатного соединения - креатинфосфата (КрФ);

гликолитическая (лактацидная) анаэробная, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты (МК);

аэробная (окислительная), связанная с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности.

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Фосфагенная система представляет собой наиболее быстро мобилизуемый источник энергии. Ресинтез АТФ за счет креатинфосфата во время мышечной работы осуществляется почти мгновенно. При отщеплении фосфатной группы от КрФ высвобождается большое количество энергии, которая непосредственно используется для восстановления АТФ. Поэтому КрФ является самым первым энергетическим резервом мышц, используемым как немедленный источник регенерации АТФ. АТФ и КрФ действуют как единая система энергоснабжения мышечной деятельности. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной, и играет основную роль в обеспечении кратковременной работы предельной мощности, осуществляемой с максимальными по силе и скорости сокращениями мышц: при выполнении кратковременных усилий взрывного характера, спуртов, рывков, как, например, спринтерский бег, прыжки, метания или удары рукой и ногой в рукопашном бою и т. п. Наибольшая мощность алактатного анаэробного процесса достигается в упражнениях продолжительностью 5-6 секунд и у высоко подготовленных спортсменов достигает уровня 3700 кДж/кГ в минуту. Однако емкость этой системы невелика в связи с ограниченностью запасов АТФ и КрФ в мышцах. Вместе с тем, время удержания максимальной анаэробной мощности зависит не столько от емкости фосфагенной системы, сколько от той ее части, которая может быть мобилизована при работе с максимальной мощностью. Расходуемое количество КрФ во время выполнения упражнений максимальной мощности составляет всего лишь примерно одну треть от его общих внутримышечных запасов. Поэтому продолжительность работы максимальной мощности обычно даже у высококвалифицированных спортсменов не превышает 15-20 секунд.

Анаэробный гликолиз начинается практически с самого начала работы, но достигает своей максимальной мощности лишь через 15-20 секунд работы предельной интенсивности, и эта мощность не может поддерживаться более 2.5 - 3.0 минут.

Гликолитическая анаэробная система характеризуется достаточно большой мощностью, достигая у высокотренированных людей уровня примерно 2500 кДж/кГ в минуту. Энергетическими субстратами при этом служат углеводы - гликоген и глюкоза. Гликоген, запасаемый в мышечных клетках и печени - это цепочка молекул глюкозы (глюкозных единиц). При расщеплении гликогена его глюкозные единицы последовательно отщепляются. Каждая глюкозная единица из гликогена восстанавливает 3 молекулы АТФ, а молекула глюкозы - только 2 молекулы АТФ. Из каждой молекулы глюкозы образуется 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество МК. Накапливающаяся в работающих мышечных клетках МК легко диффундирует в кровь и, до определенной степени концентрации, связывается буферными системами крови для сохранения внутренней среды организма (гомеостазиса). Если количество МК, образующейся в процессе выполнения работы гликолитической анаэробной направленности, превышает возможности буферных систем крови, то это приводит к их быстрому исчерпанию и вызывает сдвиг кислотно-щелочного равновесия крови в кислую сторону. В конечном итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. При этом снижается скорость и самого гликолиза. Значительное закисление приводит также к уменьшению скорости алактатного анаэробного процесса и общему снижению мощности работы.

Продолжительность работы в гликолитическом анаэробном рижиме лимтируется в основном не количеством (емкостью) ее энергетических субстратов, а уровнем концентрации МК и степенью тканевой адаптации к кислотным сдвигам в мышцах и крови. Во время выполнения мышечной работы, обеспечиваемой преимущественно анаэробным гликолизом, резкого истощения мышечного гликогена и глюкозы в крови и печени не происходит. В процессе физической подготовки гипогликемия (снижение концентрации глюкозы в крови) может возникнуть по другим причинам.

Для высокого уровня проявления гликолитической анаэробной способности (специальной выносливости) существенное значение имеет степень тканевой адаптации к происходящим при этом сдвигам кислотно-щелочного равновесия. Здесь особо выделяется фактор психической устойчивости, который позволяет при напряженной мышечной деятельности волевым усилием преодолевать возникающие с развитием утомления болезненные ощущения в работающих мышцах и продолжать выполнять работу, несмотря на усиливающееся стремление к ее прекращению.

При переходе от состояния покоя к мышечной деятельности потребность в кислороде (его запрос) возрастает во много раз. Однако, необходимо по крайней мере 1-2 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. Потребление кислорода работающими мышцами увеличивается постепенно, по мере усиления деятельности систем вегетативного обеспечения. С увеличением длительности упражнения до 5-6 минут быстро наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Почему БАДы:

News image

БАДы Тяньши: несомненная польза

Пожалуй, сегодня не встретишь ни одного человека, который бы не слышал об эффективности китайской народной медицины. И это не ...

News image

Биологически активные добавки, предназначенные для похудения

Тучность либо лишний вес приводит к целому ряду весьма серьезных проблем, связанных со здоровьем. Тучность это один из фактор...

News image

Как осуществляют хранение БАД?

Стандарты и требования к хранению пищевых продуктов никого не удивляют, также никто не удивляется условиями хранения лекарств...

Каталог лекарств:

Ученые смогли выяснить, как избавиться от никотиновой зависимости

News image

Канадским ученым удалось выяснить, по какой причине одни люди привыкают к курению почти с первой сигареты...

Слабительные средства

News image

Слабительные средства - - вещества, которые способствуют продвижению содержимого кишечника и ускоряют дефека...

Фенолы

News image

Фенол, кислота карболовая. Получается при перегонке каменноугольного дегтя. Фенол чистый, раствор оказыва...

Препараты для спорта:

Четыре клинические формы перенапряжения

News image

Клинические формы перенапряжения: 1. Перенапряжение центральной нервной системы; 2. Перенапряжение серде...

Всестороннее рассмотрение современных ААС (пост LAWNSAVERа, модератора

News image

ANDY 13: Всестороннее рассмотрение современных AAС. Если Вы планируете цикл в 10 недель, основная Ваша це...

Биосинтез Белка

News image

Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и ...

Место БАДов:

News image

Чередование и другие стратегии замедления и реверсирования антибиотико

Главными факторами приводящими к увеличению антимикробной резистентности бактерий являются недостаточный контроль инфекций и неп...

News image

Клинические испытания новых препаратов

На протяжении последнего времени именно в отделе экспериментальных препаратов в клинической онкологии Н. Блохина были разработан...

Клинические исследования:

News image

Ключевые вопросы биоэтики

Всем студентам биологических и медицинских специальностей известна такая дисциплина, как биоэтика. В учебной программе она стоит...

News image

Медицина будущего: использование наночастиц для доставки лекарств чере

Для того чтобы преодолеть роговой слой кожи (лат. — stratum corneum), выполняющим основную барьерную функцию покровов тела, на п...

Внимание! Фальсификат:

News image

ОПАСНЫЕ СВЯЗИ

Как заявил на конференции исполнительный директор AIPM в Москве Роберт Розен, объем контрафактных лекарств составляет примерно 2...

News image

Производство ФЛС

Препятствующие факторы в-г существенно затрудняют внутреннее производство ФЛС. Поэтому практически все ФЛС на рынки развитых стр...

О компании

about

Контактная информация:

about

Авторизация