Аптечные новости:
В состав нижегородской ГК Фармассоциация вошла местнаНижегородская аптечная сеть «Фармкомплект-аптека» вошла в состав нижегородской же группы компаний «Фармассоц... |
Российская фармацевтическая ассоциация (Росфарма)Была создана в 1993 году по инициативе и при непосредственном участии фармацевтических работников . В настоя... |
История фармокологии:
История создания лекарствСоздание современных лекарственных средств является одним из крупнейших научных достижений XX века. Недаром ... |
История возникновения аспиринаОн родился как проявление сыновней любви, чтобы потом положить начало всемирному бизнесу. Старик, больной ар... |
История фармакологииИстория фармакологии также же продолжительна, как и история человечества. Для облегчения страданий при забол... |
Энергетика мышечной деятельности |
Пациентам о лекарствах - Спортивная фармакология |
Ни одно движение не может быть выполнено без затрат энергии. Единственным универсальным и прямым источником энергии для мышечного сокращения служит аденозинтрифосфат - АТФ; без него поперечные мостики лишены энергии и актиновые нити не могут скользить вдоль миозиновых, сокращения мышечного волокна не происходит. АТФ относится к высокоэнергетическим (макроэргическим) фосфатным соединениям, при расщеплении (гидролизе) которого выделяется около 10 ккал/кг свободной энергии. При активизации мышцы происходит усиленный гидролиз АТФ, поэтому интенсивность энергетического обмена возрастает в 100-1000 раз по сравнению с уровнем покоя. Однако, запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы. В реальных условиях для того, чтобы мышцы могли длительно поддерживать свою сократительную способность, должно происходить постоянное восстановление (ресинтез) АТФ с той же скоростью, с какой он расходуется. В качестве источников энергии при этом используются углеводы, жиры и белки. При полном или частичном расщеплении этих веществ освобождается часть энергии, аккумулированная в их химических связях. Эта освободившаяся энергия и обеспечивает ресинтез АТФ. Биоэнергетические возможности организма являются наиболее важным фактором, лимитирующим его физическую работоспособность. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (бескислородным) и аэробным (окислительным) путем. В зависимости от биохимических особенностей протекающих при этом процессов принято выделять три обобщенных энергетических системы, обеспечивающих физическую работоспособность человека: алактная анаэробная, или фосфагенная, связанная с процессами ресинтеза АТФ преимущественно за счет энергии другого высокоэнергетического фосфатного соединения - креатинфосфата (КрФ); гликолитическая (лактацидная) анаэробная, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты (МК); аэробная (окислительная), связанная с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах. Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности. Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем. Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента. Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии. Фосфагенная система представляет собой наиболее быстро мобилизуемый источник энергии. Ресинтез АТФ за счет креатинфосфата во время мышечной работы осуществляется почти мгновенно. При отщеплении фосфатной группы от КрФ высвобождается большое количество энергии, которая непосредственно используется для восстановления АТФ. Поэтому КрФ является самым первым энергетическим резервом мышц, используемым как немедленный источник регенерации АТФ. АТФ и КрФ действуют как единая система энергоснабжения мышечной деятельности. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной, и играет основную роль в обеспечении кратковременной работы предельной мощности, осуществляемой с максимальными по силе и скорости сокращениями мышц: при выполнении кратковременных усилий взрывного характера, спуртов, рывков, как, например, спринтерский бег, прыжки, метания или удары рукой и ногой в рукопашном бою и т. п. Наибольшая мощность алактатного анаэробного процесса достигается в упражнениях продолжительностью 5-6 секунд и у высоко подготовленных спортсменов достигает уровня 3700 кДж/кГ в минуту. Однако емкость этой системы невелика в связи с ограниченностью запасов АТФ и КрФ в мышцах. Вместе с тем, время удержания максимальной анаэробной мощности зависит не столько от емкости фосфагенной системы, сколько от той ее части, которая может быть мобилизована при работе с максимальной мощностью. Расходуемое количество КрФ во время выполнения упражнений максимальной мощности составляет всего лишь примерно одну треть от его общих внутримышечных запасов. Поэтому продолжительность работы максимальной мощности обычно даже у высококвалифицированных спортсменов не превышает 15-20 секунд. Анаэробный гликолиз начинается практически с самого начала работы, но достигает своей максимальной мощности лишь через 15-20 секунд работы предельной интенсивности, и эта мощность не может поддерживаться более 2.5 - 3.0 минут. Гликолитическая анаэробная система характеризуется достаточно большой мощностью, достигая у высокотренированных людей уровня примерно 2500 кДж/кГ в минуту. Энергетическими субстратами при этом служат углеводы - гликоген и глюкоза. Гликоген, запасаемый в мышечных клетках и печени - это цепочка молекул глюкозы (глюкозных единиц). При расщеплении гликогена его глюкозные единицы последовательно отщепляются. Каждая глюкозная единица из гликогена восстанавливает 3 молекулы АТФ, а молекула глюкозы - только 2 молекулы АТФ. Из каждой молекулы глюкозы образуется 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество МК. Накапливающаяся в работающих мышечных клетках МК легко диффундирует в кровь и, до определенной степени концентрации, связывается буферными системами крови для сохранения внутренней среды организма (гомеостазиса). Если количество МК, образующейся в процессе выполнения работы гликолитической анаэробной направленности, превышает возможности буферных систем крови, то это приводит к их быстрому исчерпанию и вызывает сдвиг кислотно-щелочного равновесия крови в кислую сторону. В конечном итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. При этом снижается скорость и самого гликолиза. Значительное закисление приводит также к уменьшению скорости алактатного анаэробного процесса и общему снижению мощности работы. Продолжительность работы в гликолитическом анаэробном рижиме лимтируется в основном не количеством (емкостью) ее энергетических субстратов, а уровнем концентрации МК и степенью тканевой адаптации к кислотным сдвигам в мышцах и крови. Во время выполнения мышечной работы, обеспечиваемой преимущественно анаэробным гликолизом, резкого истощения мышечного гликогена и глюкозы в крови и печени не происходит. В процессе физической подготовки гипогликемия (снижение концентрации глюкозы в крови) может возникнуть по другим причинам. Для высокого уровня проявления гликолитической анаэробной способности (специальной выносливости) существенное значение имеет степень тканевой адаптации к происходящим при этом сдвигам кислотно-щелочного равновесия. Здесь особо выделяется фактор психической устойчивости, который позволяет при напряженной мышечной деятельности волевым усилием преодолевать возникающие с развитием утомления болезненные ощущения в работающих мышцах и продолжать выполнять работу, несмотря на усиливающееся стремление к ее прекращению. При переходе от состояния покоя к мышечной деятельности потребность в кислороде (его запрос) возрастает во много раз. Однако, необходимо по крайней мере 1-2 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. Потребление кислорода работающими мышцами увеличивается постепенно, по мере усиления деятельности систем вегетативного обеспечения. С увеличением длительности упражнения до 5-6 минут быстро наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов. |
Читайте: |
---|
Почему БАДы:
Биодобавки для мышцВ жизни спортсмена много различных событий, многочисленных соревнований, тренировок требующих много силы, энергии, выносливости... |
Может ли БАД черника исправить зрение?Польза черники для глаз общеизвестна, оказывая стимулирующее действие на циркуляцию крови, она снимает усталость, воспаление,... |
БАДы - в помощь спортсменамИз-за того, что при занятии силовыми типами спорта (поднятие тяжестей, к примеру) начинается немалая нагрузка на мышцы, могут... |
Больному на заметку:
Каталог лекарств:
Антисептические средстваАнтисептические средства. - Антисептическими (от греч. против гниения ) называют противомикробные средства,... |
БАДы в изготовлении профессиональной элитной косметикиВ списке биологически активных веществ, которые используются в большей мере для ухода за кожей, числится оч... |
Раздражающие средстваЧисло веществ, способных вызвать раздражение кожи, очень велико. В соприкосновении с живыми тканями (кожей) ... |
Препараты для спорта:
Период полураспада стероидовСуществует целый ряд факторов влияющих на результативность лекарственных соединений. Один из таких факторов,... |
РАЗРЕШЕННЫЕ ЛЕКАРСТВЕННЫЕ СРЕДСТВА В СПОРТЕВы, наверное, заметили, что после определенных успехов, когда нагрузки удавалось с легкостью наращивать, а... |
Витамин D и фитнесНекоторые современные эксперты сомневаются в целесообразности классифицирования витамина D как витамина. По их... |