Аптечные новости:
В состав нижегородской ГК Фармассоциация вошла местнаНижегородская аптечная сеть «Фармкомплект-аптека» вошла в состав нижегородской же группы компаний «Фармассоц... |
Российская фармацевтическая ассоциация (Росфарма)Была создана в 1993 году по инициативе и при непосредственном участии фармацевтических работников . В настоя... |
История фармокологии:
История создания лекарствСоздание современных лекарственных средств является одним из крупнейших научных достижений XX века. Недаром ... |
История возникновения аспиринаОн родился как проявление сыновней любви, чтобы потом положить начало всемирному бизнесу. Старик, больной ар... |
История фармакологииИстория фармакологии также же продолжительна, как и история человечества. Для облегчения страданий при забол... |
Медицина будущего: использование наночастиц для доставки лекарств через кожу |
Фармакология - Клинические исследования |
Для того чтобы преодолеть роговой слой кожи (лат. — stratum corneum), выполняющим основную барьерную функцию покровов тела, на практике используются методы физического и химического воздействия. В тоже время наука не стоит на месте и в лабораториях по всему миру учёные активно разрабатывают новые и высокоэффективные подходы в доставке молекул через кожу (трансдермальная доставка). Результаты этих работ настолько обнадёживают, что складывается впечатление, будто в ближайшем будущем практически любое потенциально активное соединение — гидрофильное или гидрофобное, низкомолекулярное или полимерное (в том числе, белки и молекулы нуклеиновых кислот), — не составит труда доставить точно по адресу. Именно эти достижения и хотелось бы вынести из лабораторных кулуаров на всеобщее обозрение. Речь пойдёт о нанотехнологиях и их применении в медицине (наномедицине). В России это слово, в свете последних государственных инициатив, наверняка знакомо даже школьнику, и практически стало именем нарицательным. Поэтому будет небезынтересно познакомиться поближе с этой областью в уже упомянутом контексте. Наночастицы как они есть«Нано» (греч. — миллиардная доля) в применении к описываемым объектам подразумевает, что их размеры находятся в пределах 10-9 м, что соответствует уровням биологической организации от атомарного до субклеточного. Таким образом, под определение «наночастицы», вообще-то, попадают практически любые надмолекулярные комплексы. Однако, по уже сложившейся традиции в биологической и медицинской литературе, под наночастицами подразумевают вполне конкретные (и, прежде всего, искусственно созданные) молекулярные конструкции. Их можно условно разделить на несколько классов (рис. 1). Биологические и биогенные наночастицы. Биологический мир буквально наполнен наночастицами — это ферменты (белки с каталитической активностью), молекулы ДНК и РНК, рибосомы, клеточные везикулы, вирусы и пр. Отличительной особенностью таких объектов является их способность к агрегации и самоорганизации. Это свойство активно используется при создании искусственных конструкций, имитирующих реальные биологические структуры. Яркий пример представляют собой различные однокомпонентные и многокомпонентные липосомы, которые способны при определенных условиях формироваться из раствора смеси липидов. Часто на практике используют и уже существующие в природе биологические наночастицы. Например, различные вирусы активно применяют для генной модификации (трансфекции) клеток. Показано, что аденовирусы с подавленной системой репликации могут быть эффективно использованы и для местной неинвазивной (без инъекций) вакцинации через кожу (доставке антигенов к иммунным клеткам Лангерганса, присутствующим в коже). К искусственным биогенным наночастицам, предназначенным для направленной доставки, помимо липосом обычно также относят липидные нанотрубки, липидные наночастицы и наноэмульсии, циклические пептиды, хитозаны, наночастицы на основе нуклеиновых кислот. Полимерные наночастицы. Полимерные материалы обладают рядом преимуществ, определяющих эффективность их применения в технологиях доставки, — биосовместимость, способность к биодеградации, функциональная совместимость. Типичными соединениями, которые представляют основу для создания полимерных наночастиц, являются полимолочная и полигликолевая кислоты, полиэтиленгликоль (ПЭГ), поликапралактон и др., а также их различные сополимеры. ПЭГ часто используют для повышения стабильности различных молекулярных переносчиков. Например, липосомы, покрытые ПЭГ («липосомы-невидимки»), по сравнению с обычными, менее подвержены биодеградации, в результате чего обладают заметным пролонгированным действием. Дендримеры. Дендримеры являются уникальным классом полимеров с сильно разветвлённой структурой. При этом их размер и форма могут быть очень точно заданы при химическом синтезе. Дендримеры получают из мономеров, проводя последовательные конвергентную и дивергентную полимеризации (в том числе используя методы пептидного синтеза), задавая таким способом характер ветвления. Типичными «мономерами», используемыми в синтезе дендримеров, являются полиамидоамин (ПАМАМ) и аминокислота лизин. «Целевые» молекулы связываются с дендримерами либо путём образования комплексов с их поверхностью, либо встраиваясь глубоко между их отдельными цепями. Контролируемые размеры и свойства поверхности, а также стабильность дендримеров делают их весьма перспективными для использования в качестве переносчиков. Углеродные наночастицы. Нанотрубки и фуллерены являются одними из самых «узнаваемых» наноструктур — практически ни один популярный текст про нанотехнологии не обходится без их изображений. За открытие новой аллотропной формы существования углерода Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии Эти структуры, образованные только атомами углерода, могут быть получены при помощи вольтовой дуги, лазерной абляцией (выжиганием), химическим осаждением из газовой фазы, а также в процессе горения. Сегодня в промышленных масштабах фуллерены получают термическим распылением углеродсодержащей сажи в атмосфере инертного газа при пониженном давлении в присутствии катализатора. Нанотрубки обладают повышенным сродством к липидным структурам. При этом они способны образовывать стабильные комплексы с пептидами и ДНК-олигонуклеотидами, и даже инкапсулировать эти молекулы. Это определяет их применение в области создания эффективных систем доставки вакцин и генетического материала. Неорганические наночастицы. К этому классу обычно относят наноструктуры, полученные на основании оксида кремния, а также различных металлов (золото, серебро, платина). При этом часто такая наночастица имеет кремниевое ядро и внешнюю оболочку, сформированную атомами металла. Использование металлов позволяет создавать переносчики, обладающие рядом уникальных свойств. Так, их активность (и в частности, высвобождение терапевтического агента) может быть модулирована термическим воздействием (инфракрасное излучение), а также изменением магнитного поля. При этом показано, что металлические наночастицы могут эффективно проникать вглубь эпидермиса. Не только доставкаИспользование наночастиц в медицине позволит не только эффективно доставлять биологически активные молекулы сквозь различные барьеры организма, которые они не способны преодолевать самостоятельно (кожный, гематоэнцефалический), но и существенно изменять характер действия препарата. Например, трансдермальная доставка, по сравнению с доставкой через кровяное русло, позволяет избежать нежелательных побочных эффектов, снизить эффективную дозу препарата за счет существенного повышения его локальной концентрации. Кроме того, было показано, что у терапевтических молекул, доставляемых в организм с помощью наночастиц, меняется фармакокинетика. Если для препаратов, попадающих в организм перорально или в результате инъекции, увеличение концентрации во времени описывается характерной кинетической кривой первого порядка (концентрация экспоненциально увеличивается во времени), то в случае использования наночастиц наблюдается идеальная временная зависимость нулевого порядка (равномерное увеличение концентрации препарата во времени). Это позволяет более точно планировать дозировки препарата и пролонгировать его действие. |
Читайте: |
---|
Почему БАДы:
БАД для суставовВ современном мире все большее число людей страдают заболеваниями опорно-двигательного аппарата. Чаще всего они возникают всле... |
Добавки: в чем их польза?Активные биологические пищевые добавки вошли в нашу жизнь и надежно в ней обосновались. Несмотря на то, что они не являются ле... |
Финские БАДы: изучаем препаратыЕсли азиатские и исконно русские биологически активные добавки уже имеют широкую популярность и применение среди простого насе... |
Больному на заметку:
Каталог лекарств:
Лечение карциномы печени в клиниках ИзраиляГепатоцеллюлярная карцинома: стадии заболевания и диагностика Дифференцируют четыре стадии рака печени, в зав... |
Возвращаем зрение?Несколько упражнений для снятия напряжения глаз. На протяжении рабочего дня следует несколько раз в день ... |
Гематоген: лекарство или БАД?Рассматривая и оценивая различные продукты, обычно мы можем без сомнения определить их принадлежность к как... |
Препараты для спорта:
Чудодейственный препарат АнастанПрепарат Анастан – это чудо в мире спорта (пауэрлифтинг, бодибилдинг, фитнес и т.д.). Растительные стерины явл... |
ГОРМОН РОСТА. ВНОСИМ ЯСНОСТЬО гормоне роста много говорят, и эта тема, в последнее время, становится все более и более интересна широком... |
Общие рекомендации в построении циклов ААС с последующем восстановлениЛучшими циклами являются или двухнедельные циклы с использованием короткодействующих ААС ( Например Тестосте... |